
Journal of Mathematical Chemistry 18 (1995) 37-72 37

Definition and quantum chemical applications
of nested summation symbols and logical functions:

Pedagogical artificial intelligence devices for
formulae writing, sequential programming

and automatic parallel implementation

Ramon Carb6 and Emili Besalfi

Institute of Computational Chemistry, University of Girona, Albereda 3-5,
17071 Girona, Spain

Received 27 February 1995

1. In t roduc t ion

In this paper two new kinds of mathematical symbols with application to several
aspects of computational chemistry, related to programming techniques and artifi-
cial intelligence, are described. The first one constitutes a family of symbols, related
to logical expressions. They are referred to here as logical functions (LFs). The other
symbol described in this paper is called a nested summation symbol (NSS). We insist
on the quantum chemical usefulness of these symbols, so, application examples of
the NSS graphism over some computational quantum chemistry topics are given.
The results show how some standard formulae become shorter and easier to be
written, generalized, programmed and evaluated. In some NSS expressions and
other mathematical applications, the use of such symbols makes the whole problem
formulation compact and elegant. Moreover, both symbols constitute a powerful
link between mathematical formalism and programming in high level languages:
Essentially, NSS are connected with general nested do loops (GNDL) structures, a
general programming concept developed in our Laboratory, and LFs are related to
general logicalifsentences. The pedagogical potential of both mathematical devices
is also revealed.

Through our research path on some quantum chemical topics, we have been
facing the need to obtain transparent useful mathematical expressions, based on
elementary mathematical concepts, see for example ref. [1]. We asked ourselves
many times about the ability of such a reformulation to exhibit, if possible, the
attractive of being simple, computationally useful, elegant, general, pedagogical

© J.C. Baltzer AG, Science Publishers

38 R. Carb6, E. Besalfi / Nested summation symbols and logical functions

and susceptible of immediate translation to any high level programming
language.

Even if only some parts of such a conceivable mathematical ideal scheme could
be obtained, quantum mechanical, computational and pedagogical theoretical
structures may obtain an important profit. Also, because mathematical symbols
will be ineluctably involved in the new ambitious framework, other scientific areas
as computat ional chemistry and physics or applied mathematics in general can be
benefitted too.

In our intention was, with high priority, implicit the condition that the final
scheme, if feasible, can serve as a tool to build up a convenient bridge between
mathematical general formulae writing and computationally valid general pro-
gram structures. Thus, programming techniques can also be assisted by means of
this process, also artificial intelligence algorithms may use the results of our ideal
outline in order to increase the performances of formulae generation and transla-
tion programs.

With all this conditioning principles in mind, the present paper tries to describe
in the first place the definition and properties of two fundamental symbols: nested
summation symbols and logical functions.

The usefulness of both symbolic concepts is shown nest. Use of the NSS in the
area of quantum chemistry is illustrated by means of several assorted problems,
revisited by means of the formalism generated by the symbols we promote. Various
mathematical examples and other related topics are given in the appendices in order
to illustrate the unlimited power of the symbolic concepts presented here.

Both symbols are related to the primitive intentions we have stated initially.
The authors hope these symbolic forms turn out to be as useful to the scientific com-
munity as they had been in the development of their quest of a valid computat ional
scheme based on PC machinery, whose main features had been already explained
by one of the authors, see for example ref. [2].

2. F r a m e w o r k o f nested s u m m a t i o n symbols

2.1. LOGICAL VECTOR DEFINITION

Let us define an n-dimensional vector whose elements are logical expressions
L = {Li}i-_l,n. In this paper a vector of this kind will be called a logical vector (LV).

2.2. LOGICAL FUNCTION DEFINITION

Consider a Boolean function L(L) which has as argument a LV. A function of
this kind will be called a logical function (LF). A LF returns a value of 1 (true) or 0
(false).

R. Carb6, E. Besal~t / Nested summation symbols and logical functions 39

2.3. LOGICAL K R O N E C K E R DELTA SYMBOL

In many computat ional algorithms or mathematical applications, in order to
obtain compact and general formulae, it is needed a symbol such as the well known
Kronecker delta, 8,~, but involving other logical relationships than the equality
between the indices i andj . One can easily define symbols which are far more gen-
eral than the Kronecker delta. Here it is described as the logical Kronecker delta
(LKD) symbol.

A LKD is a LF which can be simply defined as

1 if L is true,

6(L) = 0 if L is false, (1)

L being any logical expression, that is, a monodimensional LV. The origin of this
definition can be found in a primitive description of Carb6 and Hernfindez [3],
related to some research made on a MC SCF procedure.

In fact, the classical Kronecker delta symbol is nothing but a particular case of
the LKD, that is: ~ij = 8([i=j]) , where the logical expression is obviously
L -- [i = j] .

This mathematical symbol has an immediate translation in any high level lan-
guage: It may be related to any kind of universal logical/fstatement.

2.4. G E N E R A L I Z E D LOGICAL K R O N E C K E R DELTA SYMBOL

A generalized logical Kronecker delta (GLKD) symbol is a LF which is defined
as

I 1 if Li is true Vi = 1,n,

A(L) = 0 if 3ilLi is false, (2)

where L is a LV.
It must be noted that a G L K D symbol can be substituted by a unique LKD sym-

bol, using a logical and (A) operator n times over the elements of the LV L:

A(L) = 8(L,) --- 6 Zi . (3)
i=1

The G L K D symbol returns the unit value iff all the elements of the LV are true.
A zero value is generated in any other circumstance.

Once the LKD and G L K D functions are described, other logical functions can
be defined as more or less complex successive applications or manipulat ions of sim-
ple LKDs. They are discussed in appendix A.

2.5. NESTED S U M M A T I O N SYMBOL [4]

Let us define an operator like

40 R. Carb6, E. Besal~ / Nested summation symbols and logical functions

~n(J = i , f , s, L(L)), (4)

and let us call it a nested summation symbol. The arguments in eq. (4) are vectors,
except the last one, which is a LF with a LV argument . Index n is an integer called
the dimension of the NSS and it signals the dimension of the involved index vectors

j , i, f a n d s . All these vectors together with the LF and the integer n, can be called
the parameters of the NSS. The elements of the LV, L, are supposed to be depending
on the parameters of the NSS.

The meaning of such a convent ion about NSS corresponds to accomplish all
the sums involved in the generat ion of all the possible forms of index vectorj. The
al lowed forms of this vector arise f rom the fulfillment of the two following rules:

1. The elements of the vec to r j are defined by the limits

{ik<jk<<.fk,if &>~O} or {ik>~jk>>.fk, if sk<~O}; V k = l , n , (5)

where thejk indices can be incremented or decremented respectively in steps of
length &.

2. All the possible forms of v e c t o r j are a t tached to the LF L, in such a way that,
when developing the NSS, only those vec tors j that associated to a true value of L
are taken into account.

So, the NSS stands for a set of summat ion symbols numbered f rom 1 to n and
where the kth summat ion symbol is a t tached to the corresponding k~h index of vec-
tors j , i, f a n d s.

In order to be more explicit, one can define a NSS as the following operator:

~ , (j = i , f , s ,L (L))A(j) -
f,(sl)k(s2) f,(s.)
Z Z " " Z L(L)A(j) , (6)

jl =i! j2=i2 j.=in

~'-~fk (S~) where Z--jk=,k means that jk = ik, ik q- Sk, ik +" 2Sk, . . . , f k . Thus, the NSS generates
all vec tors j whose elements fulfill the condi t ion

Vk= l,n, {jk=ik +qSk,q=O, 1 , . . . ,Qk} , (7)

where Qk = int((fk -- ik)/Sk) and is defined only for non-negat ive a rguments for
the integer function.

For example, if the LF returns always a value of true (1), n = 2, i = (1, 2),
f = (4, 0) and s = (3, - 2) , then

~--~.n(J = i, f , s, 1)A(j) = A(I , 2) + A(I , 0) + A(4, 2) + A(4, 0). (8)

In general, the number of terms in a nested sum is equal to
tl

N = H(Qk + 1). (9)
k=l

R. Carb6, E. Besal(t / Nested summation symbols and logical functions 41

The mathematical usefulness, constituting the most conspicuous application
potential of a NSS, can be easily recognized when the particular characteristic of
these symbolic units is analyzed: The involved vector parameters, belonging to the
nested sum, could be chosen with arbitrary and variable dimensions. In the following
sections it will be shown that there are many scientific and mathematical formulae
which will benefit from this property, when written in a paper or computationally
implemented.

Other properties and the simplified notat ion of NSSs are described below.
F rom now on, some of the simplifications discussed there will profusely appear in
the text. The aspects related to the computational implementation of NSSs are
described below and in appendix B.

Even more general features can be envisaged, supposing the NSS parameter vec-
tors are real, for example, but they will not be discussed here. More information
related to NSSs can be found in ref. [5].

2.6. PROPERTIES OF THE NSS

Some particularly interesting properties concerning NSS will be discussed next.

(a) NSSs can be recognized as linear operators with respect to any general expres-
sion placed inside the nested sum and depending on the index vector attached to
the symbols:

~ n (J = i, f , s, L (L)) (aF(j) +/3G(j))

= a~-]~n(j = i, f , s, L (L))F(j) +/3~-'~,(j = i, f , s, L (L)) F (j) , (10)

where F(j) and G(j) are arbitrary functions of the index values of the vec tor j
and c~ and/3 scalars.

(b) It has to be taken into account that a product of two NSSs of dimension n and
m is another NSS of dimension n + m, or:

~ n (J = i, f , s,)L(L)) ~ m (j / = i', f~, s', L(L'))

= " "' , f O f t , s O s ' , L ' (L G L ')) ~-~,+m(JGJ = i(~i ' (11)

where the new index vectors are constructed by the direct sum of the original
vectors appearing in the product (11). Note that, in this general case, the LF
should be redefined.

(c) The NSS }--]~n(J = i , f , s , L (L)) is equivalent to the product ~ n (j = i,
f , s)L (L) taking into account the comment number 2 of section 2.5.

(d) The symbol Y'~o(J = i , f , s, L(L)) can be made equivalent, by convention, to
the unit operator.

42 R. Carb6, E. Besalfi / Nested summationsymbols and logical functions

(e) The classical summation symbol ~f=i is a particular case of the nested summa-
tion one. It can be rewritten by means of the symbol ~]1 (J' = i, f , 1, 1), where
the LF returns a constant value of true (1).

(f) The so-called Einstein's convention, by which a set of nested sums are overrid-
den from an expression, corresponds to omit a NSS like: ~]n (j = 1, ml) .

2.7. SIMPLIFIED NSS NOTATION

Despite the general form adopted here to write a NSS, sometimes it is super-

fluous to explicit all the involved parameters. When this circumstance does occur,

some parts of the general form can be dropped in an arbitrary manner. The most

important cases are:

(a) When the LF is omitted, it will mean that all the possible forms of the vec tor j
have to be generated without restriction, except by the limits and rule imposed
by vectors i , f and s by means ofeq. (5).

(b) When the step vector increment is irrelevant, obviously only the initial and final
vector index parameters need to be explicitly written. In this case, the
~ , (j = i, f , L(L)) notation can be employed. Frequently, the step vector s is
an n-dimensional vector suchass = 1 = (1, 1 , . . . , 1).

(c) The same can be said of the final parameter vector f , which may be a product
by a scalar of vector 1. As an example, the notat ion ~]n (J = 1, ml , 1, L(L)) dis-
plays the symbol which is constructed by n nested sums, whose indices have
the same values within each sum in the interval { 1, m}, each sum increment
being unit everywhere. When writing NSS made of infinite power series the fi-
nal p a r a m e t e r f m a y have all the elements infinite, then this situation can be
written by means of the convention f - oel.

(d) When initial, final, increment values and LF are implicit in the nested sum, a
simplified symbol such as ~n(J) may be also used.

(e) When the vector dimension n is obvious, then the subscript n can be omitted
from the sum, as in ~] (j = i , f , s, L(L)), for instance.

(f) Combinations of the previous simplifications can also be used.

Some of this simplification conventions will be used throughout all the remain-
ing text.

2.8. TWO USEFUL DEFINITIONS: A PARTICULAR KIND OF LV AND THE SUM OF

THE ELEMENTS OF A VECTOR

Although the elements of the LV L, appearing in NSSs in section 2.5 can be arbi-

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 43

trarily constructed, in this paper the following specific definition for the LV will
be used several times. It corresponds to defining the LV elements:

Z = Z(j , [A]) = {Zpq = [jp .A.jq]; p<q;p ,q = 1,n}, (12)

where .A. stands for an arbitrary operator as, for example, ne(¢), and (A), In
this manner the expressionjp .A. jq stands for a numerical relationship or a logical
expression.

Also, another practical definition will be used throughout the text. It corre-
sponds to the sum of the elements of an n-dimensional vector v = (V l , 192, . . . , Vn),
which is symbolized by (v>:

n

<v> = Zv i" (13)
i=1

2.9. C O M P U T A T I O N A L A L G O R I T H M . P A R A L L E L I S M .

Nested summation symbolism constitutes a perfect link between mathematical
formalism and program implementation techniques, because successive generation
o f j index vector elements can be programmed in a general but simple way under
any high level language. This can be achieved using a unique do or for loop state-
ment construct, which is general and independent of the dimension of the involved
nested sums. This kind of programming structure, when applied in any arbitrary
computational environment, can be called a general nested do loop (GNDL).

Parameter (n=?) ! Dimension of the NSS
Integer J (n),i(n),f(n),s(n)

Initial parameter values >

do k=l,n
i(k)=?
f(k)=?
s(k)=?
J (k)=i(k)

end do

GNDL procedure >

k=n
do while (k.gt.0)

if ((J(k)-f(k))*s(k).gt.0) then
J (k) =i(k)
k=k-i

else
if (LFUN(n, J,l,f,s)) call Application(n,J)
k=n

end if
if (k.gt.0) J(k)=J(k)+s(k) ! Step

end do
END

Program 1. For t ran codification of the G N D L implementing a NSS like: y'~, (j = i, f , s, L (L)).

44 R. Carb6, E. Besal(t / Nested summation symbols and logical functions

G N D L are well suited devices for programming in sequential or parallel hardware
and software as it will be shown now.

In order to prove in a practical manner the previous claims, program 1 repre-
sents a simple Fortran source code, generating all t he j index vectors appearing in
a general NSS. This algorithm corresponds to the implementation of a G N D L
structure.

Program 1 is the codification of the practical implementation of a G N D L which
represents a NSS of the type Y'~n (J = i , f , s, L(L)). The step vector s can have posi-
tive or negative indices. The values of the parameters depend on the particular
application one wants when running the algorithm. So, they are not explicitly speci-
fied and a question mark (?) stands for its values. The code takes into account the
use of a LV: it is assumed there exists a LF called LFUN which has several argu-
ments (the parameters of the NSS or others) and returns a true value if all the logical
expressions constituting the vector L (also depending on the specific application
of the algorithm) are fulfilled. A call to the Application routine is only performed
when a true result is returned by the LFUN function.

In Program 1, Application is a called procedure where the n nested loops con-
verge and where their leading indices can be arbitrarily used in the corresponding
desired internal structure. In fact, this is a general algorithm, which enables to per-
form a parallel Application implementation if the nature of the problem asks for
such a process and the available hardware allows to run it in this manner. This fea-
ture of the nested sum translation can be founded on a very important property,
such that the G N D L internal statements are always allowed to run independently
into separate CPUs. That is, despite the forms of the vector j are generated in a
sequential manner, the evaluation of the code using the vector form can be done
independently of the remaining vector forms. This allows the parallel implementa-
tion of the algorithms which can be formulated in terms of NSS. In fact, it can be
said that any formula or algorithm which can be written in terms of NSS can be paral-
lelized. The practical way to do such a parallelization is described now:

(a) Generate all the forms of the vectorj in a master CPU.

(b) Send these forms to a set of slave CPUs.

(c) Compute independently into each slave CPU the contribution to the NSS
expression attached to the received form ofvectorj .

(d) Once each contribution is computed, each slave CPU sends the result to the
master CPU.

(e) The master CPU collects, and adds up if necessary, all the partial contribu-
tions.

Also, another G N D L structure can be put aside Application, constituting the
first step towards a generalized nest of generalized nested do loops (GNGNDL) pro-
gram structure. We have developed some programming experience on this subject.

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 45

See appendix B for details about the implementation of a G N D L or a G N G N D L
in C + + high level language. A previous discussion on generalized nested to loops,
in a purely sequential programming framework, was initially made by Carb6 and
Bunge [6]. Other programs, including the implementation of some of the examples
of the present paper, can be obtained from the authors upon request.

Some Fortran compilers, by the way, have no capacity of processing more than
a limited number of classical do loops in a nest [7]. Thus, a simple scheme like the
one shown in Program 1 is a good candidate to circumvent this limitation in any
compiler, if it is present. The characteristics of the NSS together with those of the
G N D L programming structure can be used as a starting point towards the codifica-
tion of a parallel do loop high level language code.

3. Ma thema t i ca l appl ica t ion examples

As an illustration of the possible use of the described symbols, we will first pres-
ent some purely mathematical application examples of NSSs needed as a back-
ground to deal with quantum chemical problems in section 4 below. Other
examples are given in appendix C as a complementary information source. They
are related to mathematics in a broad sense and can be applied to other quantum
chemical topics.

3.1. G E N E R A T I O N OF VARIATIONS AND COMBINATIONS

A NSS can be used to generate variations and combinations of m elements
belonging to an arbitrary set of mathematical objects. It is only necessary to num-
ber in a canonical order, from 1 to m, all the elements in the set. This will produce a
completely formal development, which can be occasionally used for immediate
implementat ion on any high level language. Although this direct translation will
obviously lack programming refinement in the first bulk program scheme, it may
be considered a not too bad starting point in order to obtain a given optimized
code.

Then, one can easily construct the following objects.

3.1.1. Variations with repetition
Implementat ion of the ~-~n(J = 1, ml) symbol generates inside the nested sum

all the rn n variations with repetition, which can be formed making groups of n ele-
ments out of the m element set, with the condition m >~n.

3.1.2. Variation without repetition
The implementat ion of the nested sum structure

~ , (j = 1 ,ml , 1, A(L)) (14)

46 R. Carb6, E. Besalfi / Nested summation symbols and logical functions

corresponds to the generation of the m ! / (m - n)! variations without repetition,
which can be formed making groups ofn objects taken from the m element set inside
the nested sum. Here, A is a GLKD, see section 2.4, and L is a (~)-dimensional
LV defined as L = L (j, [#]) where the definition (12) of section 2.8 has been used.

3.1.3. Combinations
It is also possible to generate the (m) combinations related to a set ofm elements,

when they are taken in groups of n out of the m element set. Such a generation can
be performed using a similar structure as the one appearing in eq. (14), but redefin-
ing the LV by means of the following expression: L = L(j, [<]), where the defini-
tion (12) has been used again.

3.2. EXPLICIT EXPRESSION OF THE DETERMINANT OF AN ARBITRARY SQUARE

MATRIX

Using the NSS, one can rewrite the expression of an arbitrary (n x n) square
matrix A determinant, Det IA I, [8]. A compact formula of the determinant can be
written in this way as

DetlA[= ~ , (j = 1, nl, A(L))S(j) H(J, A), (15)

where L is a (~)-dimensional LV defined as L = L(j, [#]) where the definition
(12) has been used.

The S(j) factor is a sign, which can be expressed by

S(j) = (-1) p(j) , (16)

where P(j) is the parity associated to the ordinal structure of the vectorj index ele-
ments. It can be computed using the following LKD expression:

P(j) =8 2 # Z 8(jp>jq) . (17)
p=l q=p+l

Finally, the H(J, A) terms are defined by means of the product:
n

H (j , A) = Hal,j, . (18)
i=1

Although the final determinant structure (15) can easily lead to an immediate
construction of sequential or parallel routines, there cannot be a claim such that
this procedure will be better, from a computational point of view, then well-stab-
lished numerical ones, based on other grounds such as Cholesky decomposition,
see refs. [8b,9] for more details.

The previous determinant development form in eq. (15) can be used as a very
general interpretative formula, which can compete pedagogically and practically
with other widespread alternatives, for example those usually employed in quan-

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 47

tum chemistry, see ref. [10] as a guide. In section 4 this determinant form is used,
for example, to deal with Slater determinants.

One can easily see that, despite all criticisms which can arise from the program-
ming technical side, the nested sum formalism permits to solve in a very elegant
manner the following problem: Program in a chosen high level language a function
procedure which can be used to compute the determinant of a general square matrix
using the Laplace expansion.

4. Q u a n t u m chemical appl icat ion examples

Several quantum chemical application examples of NSSs and LFs follow after
the previous mathematically illustrative simple examples. Some of them had
been chosen because they are related to the actual research in this field in our
laboratory.

We do not pretend to give here an exhaustive account of all the possible applica-
tions of NSSs in quantum chemistry. Some areas, which for sure can be studied
from the nested summation point of view, like the coupled cluster theory [11], are
not included here.

In fact our interest in the present formulation, the use of NSSs and LFs, was
aroused when studying the integrals over Cartesian exponential type orbitals [4].
The use of both symbols in this case has been extensively studied in the above refer-
ence, so we will not repeat here the already published arguments.

4.1, SLATER DETERMINANTS AND MATRIX ELEMENTS

4.1.1. General definition
As it is shown in section 3.2, using nested sum terminology, the general expres-

sion for any determinant can be obtained. In this manner, this formulation can be
transferred into the study of Slater determinants [10], constructed by n spin-orbitals
associated to n electrons. We adopt the following structure and notation for nor-
malized Slater determinants:

IO(n)) = (n!)-l/2Detl~'l~2.. . Nnl

= (n!) - l /2~, (j = 1, nl, A(L))S(j)IkV(j)), (19)

where the IkV(j)) terms are built up with the spin orbital products:
n

I ~v(j)) = I ~ ~uj~(k). (20)
k=l

In this formulation, the electron coordinates are kept canonically ordered, and
the spin-orbital functions are combined and reordered by means of the NSS index
flow, as it can be seen in eq. (20). Another approach is also valid and may be as use-

48 R. Carb6, E. Besal~ / Nested summation symbols and logical functions

ful as the present one: it fixes the vector index of the spin-orbitals in canonical order
and reorganizes the ordering of the electron coordinate indices, that is,

n

[O(J)) = IX ~UkUk), (21)
k = l

but the first choice is more interesting for developing other quantum chemical
terms involving Slater determinants, as we shall discuss below.

4.1.2. M a t r i x e lements o f arbi trary n-electron operators
An operator, depending on an arbitrary number of electron coordinates, has an

easily expressible set of matrix elements, using two Slater determinants D (j) and
D(k) .

The term D (j) is a Slater determinant, formed by n functions chosen from a set
o f m available spin-orbitals, and ordered following the actual internal values of the
j i ndex vectors, That is,

D (j) = (n!)-l/2Detl~,j, ~,j= . . . ~,j.[, (22)

where the usual abbreviated form for a Slater determinant has been used as in equa-
tion(19).

Both determinants D (j) and D(k) can be considered to be built up as defined in
eq. (22). The number of different spin-orbitals appearing in both determinants can
produce a zero result for the matrix element, as it is well known for one and two
electron operators, see ref. [10]. Generalization to integrals over any number of
electrons can be performed as follows: Suppose an r-electron operator to be written
as f2(r), with the r-dimensional vector r representing the coordinates of the canoni-
cally ordered r(~<n) electron set: (rl, r2, . . . , rr). The matrix element between two
Slater determinants can be written as

(D (j) l f 2 (r) l D (k)) = (n!)-l}-~n(p = 1,nl , A(L(p)))

• ~-~,,(q = 1 , n l , A (L (q)))

• S(p)S(q)(kP(j[p]) I S2(r) l~(k[q]) >, (23)

where the symbolj[p] means that a pe rmuta t ionp is performed over the parameter
vec to r j subindices. The integral over the spin-orbital products, appearing as the
right-most term ofeq. (23), can now be simplified. Because the canonical ordering
of the electrons is preserved by convention in the spin-orbital products implicit in
eq. (19), as discussed before, on can write the integral appearing in eq. (23) using
only the first r spin-orbitals of the successive products, which in turn will be the
ones connected with f2(r), the r-electron operator:

R. Carb6, E. Besal~ / Nested summation symbols and logical functions 49

< lj ll"lrl' lklqll>=(;I , lil "lr I
i=1 l=l

• 6(j[pj] = k[qj]; Vj = r + l ,n) . (24)

The LKD appearing at the end of eq. (24) when integration is performed over
the coordinates of the remaining n-r electrons can be easily substituted by the
equivalent logical expression

~5(j[pj] = k[qj]; Vj = r + 1,n)
r

= 6([[j[p] - k[q]H 1 = Z IJ[Pi] - k[qi]l), (25)
i=1

where the Minkowski norm of the difference between the permuted vectors j[p]
andj[q] must be equal to the sum of the absolute values of the differences between
the first rth components of both vectors.

The right-hand part of the last equality (25) may be substituted in eq. (24) and
the resulting formula substituted into the expression (23), giving

(D(j) lO(r) lD(k)) = (n[)-l)--].,(p = l , n l , A(L(p)))~n(q = 1,nl, A(L(q)))

" S ~) S (q) (ri~=l g/y[p,l(i) O(r) riH=l ~k[q,](i) I

(r)
• 6 I I J) ,] - k [q] l l l = I j [p i] - • (2 6)

i=1

This final result indicates fairly well one that can have at least r differences
between the spin-orbitals involved in constructing both determinants in order that
the integral (23) keeps being not automatically zero• This result encompass the
well-described zero-, one- and two-electron operator cases [10,12], generalizing in
this way the rules governing the calculation of operator matrix elements between
two Slater determinants. One can, thus, say that the general rule in order to prevent
automatic integral nullity is: r-electron operators allow a maximal amount o f r
spin-orbital differences.

The same expression can be used with the appropriate restrictions to obtain
matrix elements over Slater determinants made from non-orthogonal one-electron
functions. The LKD expression, appearing in eq. (24), as defined in eq. (25) must
be substituted by a product of overlap integrals, Sij, between the involved spin orbi-
tals, that is

(O(j[p]) [S2(r)[O(k[q]))

/ r I~ / n
: HCj~,](i):2(r) ~/k[qi] (i) " 1-I SJ[P'],k[qj] " (27)

i=l i=l j = r + l

50 R. Carb6, E. Besal(t / Nested summation symbols and logical functions

4.2. CI W A V E F U N C T I O N S

Using the approach already described for combination generation, as outlined
in section 3.1.3, one can formulate in a short but completely general way the CI
wavefunction [12,13] structure.

This kind of wavefunctions, in the complete CI framework, as Knowles and
Handy [13e] have proved feasible, for a system of m spin-orbitals and n (~< m) elec-
trons can be written using a NSS formalism as

= ~-~n(J = 1, ml , zS(L))C(j)D(j), (28)

where the same LV as defined in section 3.1.3 has been used here. The terms D(j)
are Slater determinants constructed as the one defined in eq. (22). The C(j) factors
are variational coefficients attached to each Slater determinant.

Also, an alternative formulation ofeq. (28) can be conceived if one wants to dis-
tinguish between the ground state, monoexcitations, biexcitations and so on. Such
a possibility is symbolized in the following CI wavefunction expression for n elec-
trons, constructed so as to include Slater determinants up to thep th (p ~<n) excited
order. One can initially start from n occupied spin-orbitals {~'j}j=l,. and m(~>p)
unoccupied ones {~k}k=l,,.. Then, the CI wavefunction is written in this case as the
linear combination

P

~ = ~-~-~n_e(j= 1,nl, A(L(j)))}-~e(k= 1,ml, A(L(k)))
e=0

. C (j G k) D (j G k) , (29)

where the index e, appearing in the first classical sum, signals the excitation order.
That is, for e = 0 one has the ground state, for e = 1 the monoexcitations are
obtained, etc.

In eq. (29) the D(j(~k) terms are n-electron Slater determinants formed by the
spin-orbitals numbered by means of the direct sum:j(~k of the vector index param-
eters attached to the involved nested sums and to the occupied-unoccupied orbitals
respectively. That is,

D(j•k) = (n!) -1/2 Detl ~uj, ~u]2... ~ujo_~4~, 4~k2. • • ~kel. (30)

These two general CI function expressions, along with the results obtained in
section 4.1 above, permit to compute the expected value form of any quantum
mechanical operator in a most complete general way.

4.3. D E N S I T Y F U N C T I O N S

4.3.1. General theory: L6wdin-Mc Weeny scheme
Density functions of any order can be constructed by means of L6wdin or

McWeeny descriptions [14]. Using a normalized n-electron wavefunction I~b(j)),

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 51

usually taken as a Slater determinant or a linear combination of them, the nth order
density matrix element p(') (j, j I) can be written as

p(n)(j, j l) = [~(j))(qs(j)[, (31)

where j and j / are n-dimensional vectors collecting the coordinates of the n
particles.

A recurrent procedure can be defined to obtain the remaining lesser order density
matrix elements. The (n - 1)th order density matrix element is obtained from the
nth order one, integrating over the coordinates of one electron. The result is

J ') : ° / f .:'o .Jo,
where 6 is the Dirac delta function. The n-dimensional vector argument of the sys-
tem wavefunction has been expressed in terms of the direct sum of two subvectors,
this requires a n-dimensional vector partition in a (n - 1)-dimensional vector plus
a monodimensional one. The last one has been taken arbitrarily as the last index of
the original n-dimensional vector.

Using this recurrence formula, it is possible to generate all the possible density
matrix elements of order n-m up to the first. The explicit expression for the (n-m)th
order matrix element is

) p(n-m)(j,j,) = (n m) <~(J;-k+l--jn-k+,) # (j + i) # * (j l + i I) dg di,

(33)
where the vector i is constructed as i = (in-m+1, jn-m+2, ...,jn) and the differential
di is defined as di = dj,-m+ldjn-m+2.., djn. Similar expressions hold for the primed
terms.

Diagonal terms of the density matrix are obtained when the primed arguments
become equal to the unprimed ones. The nth order diagonal element of the density
matrix is then expressed as

p(n) (j,j) = p(n)(j) = i~(j) } (~(j) [, (34)

and can be named the nth order density function. Lesser order density functions
can be obtained in a similar way as described in eq. (33):

The integration of the first order density function is equal to n, the number of
involved particles. The pth order density function has the following meaning: the
term p(P) (j)dj gives, multiplied by n, the probability to find, within the volume ele-
ment dj, p particles having the space-spin coordinates/0/1, j2, .--, jp}, respectively,
averaged over all the space-spin positions of the remaining n-p particles.

52 R. Carb6, E. Besalfi / Nested summation symbols and logical functions

Here we will give alternative explicit expressions for non-diagonal terms of the
density matrix, which will be general in the sense that diagonal elements appear as
particular cases.

4.3.2. Density matrix elements andn-particle operators
Density matrices are well suited in order to express expectation values of opera-

tors as it is shown in ref. [14a]. Here, a reformulation in terms of NSS will be
given.

Let an n-particle operator be expressible in terms of other zero-, one-, . . . ,
many-particle operators. This general n-particle operator can be written in terms of
the NSS formalism as

Frl

£2(1,2, . . . ,n) = g?(n)= ZY-~i(j)f2(i)(j). (36)
i=0

If the operators are symmetrical with respect to the particle indices, then, an
equivalent expression for the operator (36) can be written as

m

~2(n) = Z ~_~i(j, A(L))~(i)(j) , (37)
i=0

where the generalized logical Kronecker delta, A(L), included in the NSSs is used
to avoid redundant terms in eq. (37). This requires the logical vector, L, to be
defined as L = L(j, [<]), following the notation ofeq. (12).

In the general case, shown in eq. (36), the expectation value of the operator can
be obtained by means of the following integral:

m

(f2(n)) = (~(J)] ~ ~--~i(J) s2(i) (J) l~(J))
i=0

m /
= Z 2 i (j) ~b*(j)O(i)(j)g'(j) dj

i=0 m /
= ~ ~--],i(J) (5(j' - j) f2 (i) (j)p(i)(j ',j)dj 'dj, (38)

i=0

where I~(j)) is the system wavefunction and it is assumed that the primed variables
are just a copy of the unprimed ones, but the many-particle operator only acts
over the later ones.

With respect to the above comments, it can be said that density matrix elements
can be considered as n-particle operators. This feature is related to the comments
outlined in section 4.1.2. and it will be used when developing the quantum similarity
theoretical framework in section 4 below.

4. 3.3. NSS explicit expression for density matrix elements
Using a normalized n-electron Slater determinant, [D (j)) , as a system wavefunc-

R. Carb6, E, Besalfi / Nested summation symbols and logical functions 53

tion, constructed as discussed in section 4.1, one can write the nth order density
matrix element p(') (j, j ') as

p(') (j , j ') = ID(j)) (D(j ') I

__~ (g/!)-I E n (p ---- 1, nl , A(L(p)))En(q = 1, nl, A(L(q)))

- S(p)S(q)[kv (j~p]))(kv (j '[q]) [, (39)

where, the [kv(j~p])} terms are spin-orbital products as they were defined in
eq. (20); the symboljLp] means a permutation p is performed over the parameter
vectorj subindices.

Generalization of this one term function result is straightforward. If the system
wavefunction is a linear combination of Slater determinants, {[Dp(j))}, as in the
expression

m

[4~(j)} = E CpID, (j)} ' (40)
p = l

then, the nth order density matrix element takes the following form:

m m

P(')(J,J') =]~(J))(~(J ')[= E E CpCq]Dp(j)}(Dq(j')[. (41)
p=l q=l

The determined products appearing in the right-most side of eq. (41) bear the
same structure as those appearing in expression (39); they differ in that the two
involved determinants are constructed with two non-equivalent sets of spin-
orbitals.

Here we will only deal with monodeterminantal functions to describe a simpli-
fied theoretical development. The interesting practical result concerning nth order
density matrix elements, constructed using Slater determinants as basis sets,
appears once spin-orbitals are described by means of the LCAO approach. This
possibility will be described now.

4.3.4. LCA O form of density matrix elements
Let us write the LCAO approach for a given spin-orbital set { ~'k} as

Mk
, k = cok o, (421

a=l

where each spin-orbital has been expressed as a linear combination of atomic
spin-orbitals using a Mk-dimensional basis set X = (X1, X2, -.-XMk)- Then, within
the NSS formalism, a product of spin-orbitals like (20) can be structured by means
of the linear combination (42) as

54 R. Carb6, E. Besalft / Nested summation symbols and logical functions

= co,: ,jxa,(i)
i=1 \ a i = l

= ~-~.n(a = 1, M) C (a , j ~]) X (a) , (43)

where a simplified NSS notation has been used, M is the vector containing the ele-
ments {MjL~] }, The symbol

n

C(a,j[p]) = I X Cad[p~] (44)
i=1

is a product of LCAO coefficients, and

n

X(a) : H Xa,(i) (45)
i=l

is a basis function product, respectively. When using a NSS formalism, it can be
seen how the product of LCAO spin-orbital expressions can be written in a similar
form to the one sum function ofeq. (42). Using eq. (43) in the spin-orbital product
appearing in the right-most side ofeq. (39), one obtains

[~/(j~]))(~(j'[q])[= ~-~.(aOb)C(a,j~])C*(b, j[q]) . X (a) X * (b ') , (46)

where a simplified NSS notation has been used. Primed indices note the spin-orbital
dependence with respect to the bra coordinates.

Finally, the nth order density matrix elements can be expressed in terms of the
atomic spin-orbital products as

p(n)(j,j,) = ~-~ . (aGb)Q(.) (a ,b)X(a)X. (b ,) , (47)

being the nth order charge and bond order hypermatrices, Q(")(a, b), defined in
turn as

Q(n) (a, b) = (n])-' ~ . (p = 1, nl , z3(L(p)))~n(q : 1, nl, z3(L(q)))

• or(p, q) C(a, j~]) C* (b,j[q]), (48)

using the occupation hypermatrix elements

~v(p,q) = S(p)S(q) . (49)

Equation (47) has the same structure as the well-known LCAO form of the first
order density function [10]. This is not surprising, because a characteristic of the
NSS formalism consists in reproducing the structure of monodimensional formula
expressions within a complete general n-dimensional framework.

Into this formulation, it is easy to find and expression for the density function

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 55

in terms of spatial orbitals only. It can be done considering the spin-orbital product
(45) split into two parts: the spatial orbitals and the spin functions product:

X(a) = qo(a)}--~(a), (50)

where
n

qo(a) = I I qOa,(i) (51)
i=1

is a product of spatial orbitals and
n

~ (a) = 1-I o'at(Si) (52)
i=1

is a product of spin functions. The function cr~,(si) stands for the spin function asso-
ciated to electron i with spin variable si.

Once these product functions are substituted in the expression for the density
function derived from eq. (47) and the integration over the spin variables is per-
formed, the LCAO expression for the spatial n-particle density function arises:

p~n)(j) = ~-~(aGb, A(L))Q(n)(a,b)~(a)qo.(b) , (53)

where the G L K D function LV argument is defined as

L = L(a, b) = {era, = orbs; Vi = l, n}. (54)

4.4. PERTURBATION THEORY

Here we briefly discuss the quantum chemical problem consisting in finding the
energy and wavefunction correction expressions of a system within the perturba-
tion theory (PT) framework. However, this problem transcends in various aspects
the quantum chemical scene and also be considered as belonging to a broader quan-
tum mechanical circle.

Some years ago one of us was interested in studying general expressions of
Rayleigh-Schr6dinger (R-S) PT [15]. We feel that the use of NSS is an ideal frame-
work to obtain a really general PTscheme.

In many text books [16] can be found the development of the PT and the asso-
ciated methodology to obtain the corrections for the energy and the perturbed
wavefunction. The resolvent technique [12,16a,c, 17] allows one to express in a for-
mal manner all the corrections of the wavefunction and also those of the energy
values. In fact, the PT may appear cumbersome because as the order of the correc-
tion increases a large number of summation symbols in the explicit formulae for
these corrections are needed [12,18]. NSSs override this problem as it will be shown
below. More details can be obtained in ref. [19], where the Brillouin-Wigner

56 R. Carb6, E. Besalft / Nested summation symbols and logical functions

(B-W) PT is implemented. Also, in ref. [20], the reader can find the development
of a generalized R-S PT in matrix form.

4.4.1. Brillouin- Wigner perturbation theory
In the B-W perturbation formalism, the nth order wavefunction correction

[16c] can be easily written, using the NSS formalism, as [19]

In;i) -~ ~n(J, A(L))Ri(j)]O;i); n > 0, (55)

and the corrections over the B-W energies can be expressed, using again the NSS
operators, as

E~ ") = ~~n-1(J, z~(L))(i; 0[VIRi(J)IO; i); n > 1, (56)

where V is the perturbation operator.
In eq. (55) and (56) the LV is defined as L(j) = {Lk = [jk # i];k = 1,n}. The

operator Ri(j) is written as

n

Ri(j) = I I Zi,+, (57)
p=l

where Zp,q is a projector-like operator defined in turn as

Zp,q = (Ep - E~°))-l]0; q)(q; 01V. (58)

Thus, one can see the NSS as a useful device which permits to write in a compact
manner the B-W perturbation general equations (55) and (56) as it is show in
ref. [19].

4.4.2. General Rayleigh-Schr6dinger perturbation theory
The use of NSS as an ideal framework to construct a really general R - S P T

scheme encompassing as a particular case the study of multiple perturbations as
those discussed recently by Kutzelnigg [21].

Let us write a perturbed Hamiltonian in a general form by a set ofk independent
perturbation operators using the following expression involving a NSS:

H = ~k(P = O, K)A(p)H(p). (59)

In eq. (59) the first parameter vector value gives the unperturbed Hamiltonian
H(0). The final parameter vector K contains the maximal order of the perturba-
tion, which can be different for every operator. The symbol A(p) is any element of
the scalar set of perturbation parameters. Both H(p) and A(p) can be considered as
products of pth order perturbation operators and pth powers of the attached
parameters, respectively.

The perturbed energies and wavefunctions for the ith system state can be

R. Carb6, E. Besal~ / Nested summation symbols and logical functions 57

expressed in a similar way as in scalar PT but substituting the scalar perturbation
order by a vector perturbation order n:

and

E, = 2 k (n = 0, (60)

[i) = ~-~k(n = 0, c~l)A(n)ln; i) . (61)

Substituting eqs. (59), (60) and (61) into the perturbed Schr6dinger secular equa-
tion produces the nth order equation. After an easy manipulation, the nth order
energy correction for the ith system's state can be written as

Ei(n) = ~ k (P = O, n, t~(p 7~ 0))(i; 0ln(P)ln - p ; i) (62)

provided that the orthogonality condition (i; 0lp; i) = ~(p = 0) holds.
Wavefunction corrections can be obtained similarly through a resolvent opera-

tor technique. The nth wavefunction correction for the ith state of the perturbed
system can be written: by means of a linear combination of the unperturbed state
wavefunctions, excluding the ith unperturbed state:

In; i) = ~ta j i lO; j) . (63)
J

After some straightforward manipulation, one can obtain the nth order wave-
function correction:

In; i) = Y'~k(P, 6(p ¢ O))Ri(p)ln - p ; i) , (64)

where a set of resolvent operators {Ri(p)[for the ith state is easily defined as
follows:

R i (p) = ~- '~'(Ei(O - Ej(0 -1 [0; j) (j ; 0[(H(p) - E,.(p)). (65)
J

Equations (62) and (64) can be considered as forming a completely general PT
for nondegenerate systems.

4.5. GTO INTEGRAL FORMULATION

The vast use made of GTO functions when performing atomic and molecular
computations [22] is well known. We are interested in problems related to quantum
similarity measures (QSM) [23], which can be connected in turn with products of
an arbitrary number of atomic orbital functions. For instance, the TRIDENT pro-
gram [23h], which uses integral measures over triple products of first order density
functions, requires the manipulation and integration of function products, invol-
ving up to six AO functions.

A description of a general Gaussian product theorem (GGPT) will allow us to

58 R. Carb6, E. Besalft / Nested summation symbols and logical functions

obtain a convenient algorithm, in order to contract the exponential part of each of
the GTO functions involved in the product. Also, when primitive GTO functions
are employed in practical calculations, the manipulation of Cartesian angular fac-
tor power products is common practice. Using nested summation symbolism the
notation of integral formulae becomes more compact and directly programmable
in both sequential and parallel environments.

4.5.1. General Gaussian product theorem
As a starting point, one can consider the general form which adopts a product

of an arbitrary number of primite GTO. Let N such GTO functions be known with
well-defined scaling factors, which can be collected in the vector a = (al, a2, . . . ,
aN), angular quantum n u m b e r s {ni}i=l,N and supposed centered at the points
(hi}i=l,N. The set of these primitive Gaussian functions will be represented by
F = {3'(Ai, ni, ai)}i=l,N. The product of the whole Gaussian function set C can be
expressed in terms of NSS notation as follows:

I I~(Ai , ni, a i) = ~ 3 j = O , ~ _ n k f (j ,n ,A ,P)~ ' (P, j , (a)) , (66)
i=1 k - I

where A and n are (n x 3) rectangular matrices, whose rows, {Ai}i=l,N and
{ni}i=l,N, are the coordinates of the centers and the quantum numbers of each
GTO, respectively.

A theorem involving the product o fN GTO basis functions has been used, gener-
alizing the well-known two Gaussian product theorem (TGPT) [24]. To prove this
final result, a simple inductive proof can be used, which is given in appendix D. In
eq. (66), the constant ~ is defined as ~ = exp((K)) with

N-1 N

(K> : <a>-I ~--~ Z aiaj (Ai- Aj) 2 , (67)
i=1 j= i+ l

where the row vectors Ai = {Aiq}q=l,3. The point P, as a row vector, is defined
through the weighted mean:

N

e = (a)-l~--~ a i A i . (68)
i=l

The f coefficients can be defined as

3

T(j ,n ,A ,P) = I I g(]q, [n]q, [d]q) , (69)
q=l

where dis a (n x 3) matrix build up by means of the difference

d = h - Q, (70)

R. Carb6,17,. Besal{t / Nested summation symbols and logical functions 59

with the (N x 3) matrix Q constructed with all the rows equal to vector P. The sym-
bols [n]q and [d]q describe the qth columns of the matrices n and d.

The g coefficients can be computed in general using a NSS formalism as

() u, g(j,u,v) = EN(j=O,u,~5(j----- <j>)) Hv u'-j' (71)
i= 1 j i

where u and v are column vectors of dimension N.

4.5.2. Compact form of the product o fan arbitrary number of G TO functions
In this manner, one can write in short the product o f N Gaussian functions as

N

H 7i = r;~(j) f (j)7(j) , (72)
i=1

keeping in mind the meaning o f f (j) as in eq. (69) and considering that 7(J) is a pri-
mitive Gaussian function as those defined as in eq. (66).

4.5.3. Integrals over an arbitrary number of GTO functions
Starting from the previous results, it is easy to find a general formula to express

the AO integrals bearing arbitrary products of primitive GTO functions and gen-
eral operators:

i j

= rcr;'~_,(j)f(j) 2 (k) f ' (k) . <"/(j)(r) I Y2(r, s)17'(k)(s) >

= t~n' ~ (j (~k) f (j) f ' (k). <3'(J)(r)lY2(r, s)13 / (k)(s)>, (73)

where Y2(r, s) is a mono (r = s) or bi (r ¢ s) electronic operator. The <',/(j)(r)[Y2(r,
s) ["/(k)(s)> integrals become mono- or bicentric depending on the nature of the
operator S2(r, s). Generalization to integrals involving arbitrary number of elec-
trons is straightforward:

<I~p I-Ii "/;(P)ID(1,2, --- ,n)[I~q I~j 7j(q)>

= E (k l * k 2 (~ • •. Gkn) Y'],(11 (~12". . . (~ln){ I-Irf(kr) } { I-Isf'(Is) }

x (I - [p . y p (k p) (p) l S ? (1 , Z , . . . , n) l I I q ' / q (t q) (q)) . (74)

Here £2(1,2, . . . , n) is an n-electron operator and the products overp and q run
over all the electrons. Each electron is associated with a set of Gaussian function
which are considered in the products over i andj . So, it has been shown which form
takes the generalization to integrals involving an arbitrary number of electrons
when dealing with GTO functions.

60 R. Carb6, E. Besal~ / Nested summation symbols and logical functions

4.6. GENERAL FORMULATION OF QSM

4.6.1. Beyond the expectation value concept
The role played by the expectation value concept is well known in quantum

mechanics [25]. Here it is shown how this concept also applies to function structures
providing the concept of expectation functions. This idea leads towards one of the
innermost definitions of the QSM theory: general density transformations (DT),
which we will discuss next.

General DT. Let us define the transform of a funct ionf(r , u,p) as the following
integral [26]:

= / f2(r, s, u,p)f(r, u,p) du, (75) T(r, s~p)

where the operator D(r, s, u, p) is the kernel of the transform. The optional vector
p provides the dependence of the function, the operator or both with respect of a
parameter set.

Starting from eq. (75), a n-th order density integral transform can be defined as
the transformation of a density matrix element of the same order:

P(") (r, s,p) = f ~(r, s, u,p)p (n) (r, u,p) du, (76)

wherep is the optional parameter vector.
This last integral in eq. (76) will be widely used in the following general quantum

similarity theory development.
Expectation functions and expectation values. It can be said that the DT in

eq. (76) constructs n-th order expectation functions of the operator ~. From an
expectation function of order n it can be obtained some expectation value by means
of the evaluation of the expectation function at a fixed point (!"0, so, P0), using the
following integral definition:

<P(")(ro, so,Po)>= f f f '(r-ro)'(s-so)'W-po)
• P(")(r,s,p) dr ds dp, (77)

where integration over all the coordinates is obviously not compulsive, allowing
in this manner to obtain expectation values which in fact are functions of some of
the parameters r, s orp.

Some cases worth of mentioning arise from the analysis of eq. (76) when the
kernel takes precise particular forms. As an example we can consider expectation
functions:

(a) The density matrix elements. When the operator ~2 appearing in eq. (76) is
defined as S2(r, s, u, p) = S2(s, u) = ~(u - s), then the DT becomes P(")(r, s, p)
= p(n)(r, s, p) and the transformation leaves invariant the density matrix

R. Carb6, E. Besalfi / Nested sumrnation symbols and logical functions 61

(b)

element. Moreover, if f2 is defined as ~2(r, s, u , p) = 3 (u - r) , then
P(") (r, s, p) = p(n)(r, p) = p(n)(r, p) and the transformation returns a diagonal
element of the density matrix: the nth order density function.

The electrostatic potentials. When within the DT definition the operator form
f2(r, s, u, p) = lu - sl-ls used, then P(n)(r, s, p) = V(n)(r, s, p). That is, a gen-
eralized form of the electrostatic potential is obtained. One can call this general
formulat ion an n-th order electrostatic potential. A particular case appears
when using the density function p(1)(s, p) in eq. (76); then the obtained trans-
form coincides with the usual electrostatic potential function.

4.6.2. Generalstructure o f Q S M
In this section, the general QSM integral will be defined and it practical compu-

ter implementat ion will be given within the LCAO MO framework.
The n-th order quantum similarity measure between a set of m systems collected

in the vector A = (A1, A2, . . . , A m) , with respect to an operator IV, can be defined
as an integral of the following kind [23j]:

z(n) (W, R (m+l'q) , S (m+l'q) ,p)

= f f W(R(l'q),s(l'q),p)(i=~l e(~/)(ri, si,p)) dR(i'm) dS (i'm) . (78)

Considering the previous equation (78), some particular aspects of the theory
and comments on the nature of the QSM elements involved have to be taken into
account:

(a) The vector n = (nl, n2, . • .,nm) collects the order of the DT of the set of systems
which are active in the vector A.

(b) Vector R is defined as containing a set of vector coordinates: R (i'j) ---- (ri, ri+l,
. . . , rj). The corresponding differential vector has a related structure: d R (i'j)

= dridri+l . . . drj. The same definitions can be considered for the vector S.

(c) Ifm/> q the measure in eq. (78) does not depend on r or s coordinates.

(d) It is possible to define the operator Win eq. (78) with an embedded Dirac delta
function, appearing as a multiplicative factor. The interest in this construction
appears when using the Dirac functional properties: upon integration with re-
spect to one of the variables appearing in the delta function, two coordinate vec-
tors of the whole integrand become identical. However, this situation restricts
the order of the involved DT to be the same.

(e) A word of caution must be said concerning the operator or DT definition. The
introduction of pure atomic density terms as Dirac delta functions of nuclear
coordinates can produce divergent integral elements when using eq. (78) and,
thus, it will be the same for any previous definition. This drawback can be

62 R. Carb6, E• Besal(t / Nested summation symbols and logical functions

6)

avoided in some cases by introducing within the operator W some kind of
weight function [27]. This warning must be taken carefully into account when
using electrostatic molecular potentials as DT appearing in the similarity meas-
ure.

The operator W is usually taken as a positive definite operator, but in a recent
work [23g] the possibility of using any kind of operator is slightly explored.

4.6. 3. LCA 0 expressions of QSM
Usually, the DTs resulting form eq. (76) are the density functions themselves.

In this case one can write, for example, the LCAO form of the general integral (78)
using the NSS formalism relative to the density functions, outlined in section 4.3
bymeans ofeq. (47):

Z(An) (w, Rm+I'q, s m+l'q) : { i=~ ~-]~n~(ai~bi) Q~') (ai, bi) }

• f f W(Rl'q, sl'q)X(ai)X*(bi)dR i'm dS i'm .(79)

Here, the parameter dependence inp has been omitted for simplicity's sake•
More details about MQS and its practical computer application can be found

in ref. [23j]. There, several particular and more practical cases derived from
eq. (78) are treated, here it has only been shown that the NSS formalism and nota-
tion can provide very compact but general formulae.

5. Conclus ions

Two useful symbolic conventions: Nested summation symbols and logical func-
tions have been defined, discussed and some examples given.

Apart from being able to simplify typographical structures, they constitute the
cornerstone of a completely general framework, allowing to write mathematical
formulae, in such a manner that immediate translation to any high level program-
ming language is feasible, producing a complete general code, which in turn can be
kept sequential or simply parallelized.

Pedagogical and in many cases mnemotechnical formula structures appear to
be also deduced at a very generic level as a consequence of the use of this kind of
device.

The obtained mathematical patterns seem to be also fairly well adapted to artifi-
cial intelligence formula writing programming philosophy.

An assorted set of quantum chemical and purely mathematical application
examples prove the generalization power and flexibility of this presently described
symbolic framework.

When NSSs and LFs are adopted as working tools, both structures appear to

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 63

trigger some sort of thinking machine, in such a way that once a given problem is
solved, new study areas immediately appear to be a promising future application
field in the focus of the imagination eye.

One can conclude that a robust and powerful theoretical machinery has been
described, possessing general, far reaching imaginative possibilities.

Translation of LFs already forms part of the usual scientific programming lan-
guages, being connected to logical if sentences. Sadly enough, NSS, as far as our
knowledge goes, do not have a direct translation to the usual high level languages.
Present-day compilers or standard language rules ignore such an interesting fea-
ture, see for example ref. [28], where the practical final form of the standard For-
tran 90 language is described.

It looks simple to introduce GNDL in the family of repetitive sentences of high
level programming languages, as appendix B proves. So we feel that a claim in this
direction to language and compiler builders can be sincerely made here. Some
immediate computational benefits may be obtained.

Perhaps there are hidden in the symbolic limbo other possible similar tools,
even better than those described here. We are confident that this paper will stimu-
late the research interest in this direction.

Acknowledgements

This work has been financed by the "Comisi6n Interministerial de Ciencia y Tec-
nologia" of the "Generalitat de Catalunya" through grant ~t¢-QFN91-4206. One
of us (E.B.) benefits from a grant from the "Department d'Ensenyament de la
Generalitat de Catalunya". The authors want to explicitly thank Professor
J. Karwowski and Professor C. Bunge for their interest in NSS theory and applica-
tions. Their ideas and suggestions developed throughout many discussions have
been of great help.

Appendix A. Other logical functions

Here are defined other symbols which belong to the family of LFs.

A. 1. RECIPROCAL LOGICAL KRONECKER DELTA (RLKD)

A R L K D is another LF defined as

~ (L) = { 0 i f L i s t r u e ,

1 if L is false,

L being any logical expression. Also,
formalism:

(80)

a R L K D can be defined using a L K D

64 R. Carb6, E. Besalgt / Nested summation symbols and logical functions

8(L) = 8(-~L) = 1 - 8(L), (81)

where a logical negation sign (--1) symbol has been used.

A.2. RECIPROCAL GENERALIZED LOGICAL K R O N E C K E R DELTA (RGLKD)

A R G L K D is a LF which is defined as

1 if Li is false Vi = 1,n, (82)

z~(L) = 0 if 3ilLiis t rue.

Cont rary to the GLKD, this symbol now gives a value one iff all the LV elements
are false, otherwise it produces a zero results. An alternative definition can be easily
constructed by means of the LKD or the R L K D symbols as

n n z](L) = A({-~Li; Vi = 1,n}) = 6(-~Li) = $(Li) = 8 ~Li , (83)
i=l i=1

where the vector L is an arbi trary LV.

Appendix B. C++ Computational implementation of NSS

A practical implementat ion of a NSS in terms of the C + + language [29] is pre-
sented next. There it is shown how NSS translation into a G N D L can be easily used
as a pseudoinstruction.

Here, it is shown a particular codification o f a NSS of the kind }--in (J = i, f , s)
in terms of the C + + language by means of an object-oriented programming strat-
egy. It will be seen how once the header of the program is defined, the use of the
NSS appears to be an adhoc language capability. The sequential version of the pro-
gram is presented here.

Header 1 shows the header file needed to implement the NSS object and related
methods. This implementat ion covers the ability to define arbi t rary dimensional
NSSs. Error tests have been omitted in order to simplify the program listing and
make it more transparent.

As an example, Program 2 shows a main program using Header 1 : It defines a
NSS and calls the Application procedure. Here Application is a routine showing the
current values of the NSS index vector j . In Program 2 has been defined the 3-
dimensional NSS ~ 3 (J = (0, 0, 0,), (1, 1, 1)) generating all the 3 digit binary num-
bers in canonical order.

Header 1 in this way being constructed, inside the Application routine can be
defined another NSS object, allowing the creation of generalized nests of general-
ized nested do loops. Program 3, shows the basic scheme where a set of three
G N D L are executed in a nested way.

R. Carb6, E. Besal~ / Nested summation symbols and logical functions 65

/ / .

class NSS // Defines the NSS object
(

int dimension, n,k! // n, kz Auxiliar variables
in; *J,*i,*f,*s; // Pointers to the Parameters of the NSS

public~
NSS(const in;, ...)l // Creator
-NSS(void); // Destraxctor

unsigned in; RUNNING(void); // Generates next leader vector
void INITIALIZE(void); // Initializes NSS
in; DIMENSION(void) t // Returns NSS dimension
in; J(int); // Return NSS J index value

)i
/! ..

unsigned in; NSStzRUNNING(void) // Generates next leader vector form
(
if (k,=0) *(J+k)+=*(s+k); 1/ Step

while (k,=0)
if (("(J+k)-*(f+k))*(*(s+k))>0) /! Limit exceeded

(
(J+k)=(i÷k);
k--;
if (k>=0) "(J+k)+=*(s+k); // Step
)

else
(
k=n;
return i; // Another vector J form is achieved
)

NSS::INITIALIZE(); // Initialize NSS for further use
return 0; // Ends NSS vector generation

)
// ..

in; NSS::DIMENSION(void) (return dimension;) // Returns the NSS dimension
// ..

// Returns the NSS vector index m value (indices numbered from 1 to dimension)
in; NSS::J(int m) (return *(J+m-l);)
// ..

NSSt~NSS(const int dim) // Constructor
C
valist index;
vastart(index,dim);

J=new int[dim]; // Allocate needed vectors
i=new int[dim];
f=new in; [dim] ;
s~new int[dim];
dimension=dim; !/ Store auxiliar variables
n=dim-l;

// Initial, Final and Step vectors
for (in; m=0;m<dimlm++) {"(i+m)-ve_arg(indax, int};)
for (m=Olm<dim;m++) (*(f÷m)-vearg(index, int)l)
for (m-0;m<dim/m++) *(s+m)=va_arg(index, int)l

va_end(index);
NSS:~INITIALIZE(); // Initialize NSS
)

// ..

void NSS:tINITIALIZE(void) // Initializes leader vector J of the NSS
{
for (in; m=0 ; m<n ; m++) *(J+m)="(i+m)l
"(J+n)=*(i+n)-"(s+n)t // Last index decremented
k=nl
)

// ..

NSS:~-NSS(void) !/ Destructor
C
dimension=n=k=0;
delete J,i,f,s; // Deallocates vectors
)

// ..

Header 1. Codification of theNSS object definition and related methods.

66 R. Carb6, E. Besal(t / Nested summation symbols and logical functions

Program

#include <stdio.h>
#include <process.h>
#include <stdarg.h>
#include <iostream.h>
#include "Header.l" // File including the NSS methods

// Application shows the J vector index values of the NSS
void Application(NSS &A)
{

for (int i=l ; i<=A.DIMENSION() ; i++) cout << A.J(i);
puts("");

)

void main ()
{
// Defines the 3-dimensional NSS called A

NSS A(3, 0,0,0, i,i,i, i,i,i);

// Generates forms of vector J and calls Application
while (A.RUNNING()) Application(A);

)

2. C + + codification of the NSS use: ~ 3 (J = (0, 0, 0), (1, 1, 1), (1, 1, 1)) by means of
Header 1.

Appendix C. Other mathematical applications of NSSs and LFs

In this appendix other mathematical applications of the symbology which we
promote are described. Some of the new formulations have immediate applications
to quantum chemical problems.

C. 1. T A Y L O R SERIES E X P A N S I O N O F A N n -VARIABLE F U N C T I O N

The complete formula for the Taylor series expansion attached to an n-variable
functionf(x) in the neighbourhood of the point x0 possesses the following peculiar
simple structure when using NSS formalism:

oo

f (x) = Z (r n !) - l ~ - ~ . . (j = 1, nl)l~(m)(j, x - x o) O (m) (j) [f (x o)] , (84)
m = O

where the l~ (m) (j, z) terms are defined by means of the following product:

void main()

/ Defines the 3 NSS's called A, B a~d C
NSS A(I, 0, i, i);
NSS B(2, 0,0, I,i, i,i);
NSS C(3, 0,0,0, i,I,i, i,i,i);

/ Runs over the NSS's and calls an Application that uses all
/ of them.

while (A.RUNNING())
while (B.RUNNING())

while (C.RUNNING())
Applic(A,B,C);

)

Program 3. Main routine showing the use of NSSs in a nested way.

R. Carb6, E. Besalk / Nested summation symbols and logical functions 67

m

1-[(m) (j , z) = H z j , ; m ¢ 0 A U(°)(j,z) = 1. (85)
i=1

Also, the 0 (m) (j)[f(x0)] expression depends on the high order partial derivative
operators, acting first over the func t ionf (x) and then evaluated at the point x0.
The differential operators can be defined in the same manner as the terms appearing
in eq. (85), but using as the second argument the nabla vector, that is,

O(m)(j) = I~(m)(j,V); m ¢ 0 A O(°)(j) = I . (86)

The expression (84) is very useful in the sense that one can control the series
truncation. This is so because the parameter m gives the order of the derivatives
appearing in the expansion.

Al though there are some general textbook approaches to the expression (84) -
see ref. [30] for example- we have not found an expression for the Taylor expansion
in full as simple as it has been presented here. The pedagogical possibilities of
NSSs appear again in this case. Moreover, many potential Taylor expansions are
used in various physical and chemical applications; for instance in theoretical stud-
ies of molecular vibrational spectra [31], in the development of a generalized PT
[20] and other quantum chemical topics, see for example ref. [32]. Then, the possibi-
lity to dispose of a compact and complete potential expression may be useful.

C.2. M U L T I D I M E N S I O N A L N U M E R I C A L INTEGRATION

Here, as another example of the large number of possibilities of the NSS symbol,
we will analyze how to generally write and program an arbitrary multidimensional
numerical integration.

In general, a monodimensional integration or quadrature can be expressed by
means of a summation symbol which has the following form [33]:

I1 = f (x) dx = C j f (v j) , (87)
j=0

where the Cj coefficients depend on the integration method available and the ~,~
parameters usually take values in the interval [a, b].

An extension of the previous equation, valid for the integration of an n-dimen-
sional function can be written as

In f (x) d x = Y-~n(J = 0, m) C (j) f (v) , (88)
I

where the NSS notat ion has been used. The integrand function depends on n vari-
ables which are collected in the vector x = (Xl, x2, . . . , xn); also the vectors
m = (ml, mE, . . . , mn) and v = (vj,, vj2, . . . , vjo) are needed. The symbol C(j) is the
product

68 R. Carb6, E. Besal~ / Nested summation symbols and logical functions

n

C(j) = I-I Cj~. (89)
k = l

The advantage of using a NSS formalism lies in the dimension of the problem,
n, which can be variable. That is, here a method is described to construct a general
routine which numerically integrates functions within an arbi t rary dimension
space. Moreover, comparing eq. (87) with the structure of the mult idimensional
case shown in eq. (88), it can be seen how the use of NSS formalism leads again to
an interesting mnemotechnical rule.

C.3. HOMOGENEOUS POLYNOMIALS OF m-TH ORDER

Nested summat ion symbology allows to express compact ly a homogeneous
polynomial expression of order m, Hm (x) [34]. The involved homogeneous polyno-
mial variables form the elements of the n-dimensional vector x = (xl, x2, . . . , xn),
and

Hm(x) = ~ n (j = O, ml , 6((j) = m))A(j) I I (j) , (90)

A(j) are the polynomial coefficients and the I] (J) terms are defined as the
product:

n

I] (j) = I I ~ ' . (91)
i=1

C.4. NSSs AND THE MULTINOMIAL FORMULA

Using the nested summat ion symbology, the mult inomial formula, see for
instance ref. [30], can be easily writ ten in an explicit form:

xi = ~-~,(j = O, ml , 6 ((j) = m)) x~', (92)
i=1

where besides the nested sum, a L K D and the vector elements sum (j) have been
also used. This general form can be connected with eq. (90), a mult inomial expres-
sion is, in this manner , some kind of homogeneous polynomial.

C.5. PRODUCT OF AN ARBITRARY NUMBER OF TERMS FORMED BY THE SUM OF
A PRODUCT OF AN ARBITRARY NUMBER OF FACTORS

Suppose one is facing the construction of the product of an arbi t rary number of
t e r m s {ti}i=l,n, each one consti tuted by a sum of an indeterminate number o f p
factors {/(i , k) }k=1~. That is:

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 69

ti----- Z f(ji,k) , (93)
j~=l k=l

One can write the product as a nested sum:

T = H ti= Y'~n(j= l,n F(j ,k , (94)
i=l

where the following convention has been used:
n

F(j,k) = IIf(/,,k), (95)
i=1

and the final index vector in the nested sum is defined by the final indices of the
sum in each term ti: n = (hi, n2, . . . n n) .

Newly, a very important universal result is obtained: The general form of the
product resembles the primitive structure of the building blocks ti. Thus powerful
mnemotechnical rules can again be easily described, whenever formulae with the
above conditional structure can be written. This new formulation can be immedi-
ately applied, for example, to the notat ion of product of polynomials, the product
of binomial powers, products of linear combinations or the product of an arbitrary
number of power series.

C.6. GENERAL PRODUCT OF AN ARBITRARY NUMBER OF MATRICES OF
ARBITRARY DIMENSION

Suppose one has N + 1 matrices A (°), A 0), . . . , A (N) with dimensions (no x nl),
(nl × n2), • . . , (nN X nN+ 1), respectively. Their product can be constructed from the
expression of the resulting matrix elements:

~---- ~, pq

the c~ terms being written as

a(p,j,q) = _(o) []-[a!i).]_(N)
ujn ,q Up,j1 L i=1 yi,Ji+lJ (97)

and where the vector n has the following structure: n = (nl, n2, . . . , nN).

Appendix D. Genera l Gaussian product t heo rem (G G P T) proof

Let a set o f N s-Gaussian functions be placed at the c e n t e r s {Ai}i=l,N and having
as scaling factors a = {c~i}i=l,N: {"/(Ai, O, ai)}i=l,U. The G G P T states that their
product is another s-Gaussian function expressed as

70 R. Carb6, E. Besal(~ / Nested sun~mation symbols and logical functions

N

H T(Ai, 0, ai) = aT(e , 0, (a)) , (98)
i=1

where (a) is the sum of the elements of vector a, according to the convent ion used
in this paper, and the point P i s defined by the weighted mean:

N

P = (a)-I Z oliAi , (99)
i=1

where ~ = exp((KN)) , and the KN vector elements are defined, in an equivalent
f rom to as in eq. (67), as

KNq = (a) -1 A~qc~i((a) - ai) - 2 ~ 6(I" > i)AiqAjqaiaj ,
j= l

V q = 1,3,

(100)

where the vectors h i = {Aiq}q=l,3.
The G G P T can be proved working with the exponential terms which are implicit

in eq. (98) and due to the separability of all these terms with respect to each coordi-
nate, it is only necessary to work out only a generic coordinate q.

The p roo f can be done by means of the induct ion method:

1. The G G P T holds for N = 1 if it is supposed that Klq = 0. Also, the G G P T for-
mula t ion is true for N + 2, since it gives

Pq ---- ((21 q- o ~ 2) - l (~ l A l q -~- o~2A2q) , (101)

and using eq. (100) one obtains

K2q = (Oq q- O~2)- loqol2(Alq -- A2q) 2 , (102)

arr iving to the same result as the one given for the wel l-known two Gauss ian prod-
uct theorem (TGPT) [24].

2. One can assume that the theorem is valid for N = k, that is when a p roduc t
o f k s-Gaussian funct ions is performed, it holds that:

k k
Kkq = (a) -1 ~ ~ 6(]'>i)oliotj(Aiq- Ajq) 2 , (1 0 3)

i=1 j= l

k
eq = (a) -1 ~ oqAiq. (1 0 4)

i=1

3. N o w it is necessary to prove that a similar relat ionship to the one expressed
in the preceding equat ions holds for N = k + 1, that is, adding a new funct ion to the
p roduc t o f k Gaussians. The product of these k + 1 funct ions gives

R. Carb6, E. Besalfi / Nested summation symbols and logical functions 71

or

Pk+l,q = ((a) -k- Otk+l) - l (a)ek ,q n t- O~k+lAk+l,q , (105)

k+l

Pk+l,q = (ak+l)-1 Z ctiAiq' (106)
i=1

where it has been defined that
k+l

(ak+l> = ~ , . (107)
i=1

It only remains to find the expression for Kk+l,q.
The exponential term involved in the product of the k + 1 Gaussians is

gNq - - (a) (rq -- pq)2 _ °Zk+l (r - Ak+l,q) 2 . (108)

Applying the TGPT to the two right-most terms, the k + 1 s-Gaussian functions
product is generated: it is a new s-Gaussian function centered at Pk+l,q and the pre-
multiplicative factor has as exponent:

M = (ak+x)-1 (a)o~k+l (Pq - - Ak+l,q) 2

N N
+ (a) - l Z Z (5(J>i)cti°~j(Aiq - Ajq)2" (109)

i=1 j=l

It is needed to prove that M = K/~+l,q. It can be shown by performing the sum
appearing in (109) and using the multinomial formula:

xi = + 2 6(j>i)xixj, (110)
i=I i=I i=1 j=l

taken from eq. (92) with m = 2, and the relationship:
N N N

E Z 6(J>i)°~i°~j(A2iq + A~q) = Z A2q c~i((a) -c~i). (111)
i=1 j=l i=1

One can now show that
k+l k+l

M = (a k + l) -1 E Z 6(J > i)°ti°zj(Aiq - Ajq)2 : Kj+l,q ' (1 12)
i=1 j=l

and the GGPT is proved.

References

[1] (a) R. Carb6 and J.M. Riera, A G e n e r a l S C F T h e o r y (Springer, Berlin, 1978). (b) R. Carb6 and
O. Gropen, Adv. Quant. Chem. 12 (1980) 159. (c) R. Carb6, L1. Domingo and J.J. Peris, Adv.

72 R. Carb6, E. Besal~ / Nested surnmation symbols and logical functions

Quant. Chem. 15 (1982) 215. (d) R. Carb6, J. Mir6, J.J. Novoa and LI. Domingo, Adv. Quant.
Chem. 20 (1989) 375.

[2] R. Carb6 and B. Calabuig, in: Quantum Chemistry, Basic Aspects, Actual Trends. Studies in
Physical and Theoretical Chemistry, R. Carb6 (ed.) Vol. 62 (Elsevier, Amsterdam, 1989) p. 73.

[3] R. Carb6 and J.A. Hernhndez, Chem. Phys. Lett. 47 (1977) 85.
[4] (a) R. Carb6 and E. Besalfl, Adv. Quant. Chem. 24 (1992) 115. (b) R. Carb6 and E. Besalfl,

Can. J. Chem. 70 (1992) 353.
[5] R. Carb6 and E. Besalfl, Comp. Chem., in press.
[6] R. Carb6 and C. Bunge, PC Actual Magazine (September 1989) 124.
[7] (a) VAX Fortran Document AA-D034D-TE (Digital Equipment Corporation, Maynard,

Mass, 1984) p. E28. (b) NDP Fortran 386 v3.0, User's Manual (Microway, Kingston, 1990). (c)
NDP Fortran 486 v4.0.2, User's Manual and Library (Microway, Kingston, 1992). (d) Lahey
Fortran V4.0, Language Reference (Lahey Computer Systems, Incline Village, 1990).

[8] (a) F. Ayers, Theory and Problems of Matrices (Schaum, New York, 1962). (b) R. Carb6 and
L1. Domingo, A Igebra Matricialy Lineal (McGraw-Hill, Madrid, 1987).

[9] J.H. Wilkinson and C. Reinsch, Linear Algebra (Springer, Berlin 1971).
[10] R.G. Parr, The Quantum Theory of Molecular Electronic Structure (Benjamin, New York,

1963).
[11] K. Jankowski, Electron correlation in atoms, in: Methods in Computational Chemistry, Vol. 1,

Electron Correlation in Atoms and Molecules, ed. S. Wilson (Plenum Press, New York, 1987)
p. 1.

[12] A. Szabo and N.S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989).
[13] (a) B. Roos, The configuration interaction method, in: Computational Techniques in Quantum

Chemistry and Molecular Physics, Vol. D, eds. G.H.F. Diercksen, B.T. Sutcliffe and A. Veillard
(Reidel, Dordrecht, 1975) p. 251. (b) I. Shavitt, The method of configuration interaction, in:
Methods of Electronic Structure Theory', Vol. 3, ed. H.F. Schaefer (Plenum Press, New York,
1977). (c) P.E.M. Siegbahn, The externally contracted CI method, in: Current Aspects of
Quantum Chemistry 1981, ed. R. Carb6 (Elsevier, Amsterdam, 1982) p. 65. (d) P.E.M. Siegbahn,
The direct CI method, in: Methods in Computational Molecular Physics, eds. G.H.F. Diercksen
and S. Wilson (Reidel, Dordrecht, 1983) p. 189. (e) P.J. Knowles and N.C. Handy, J. Chem.
Phys. 91 (1989) 2396.

[14] (a) P.O. L6wdin, Phys. Rev. 97 (1955) 1474. (b) R. McWeeny, Proc. Roy. Soc. A232 (1955)
114. (c) R. McWeeny, Proc. Roy. Soc. A 235 (1956) 496.

[15] (a) R. Carb6, Theor. Chim. Acta 17 (1970) 74. (b) R. Carb6, Rev. Roum. Chim. 16 (1971)
1155. (c) R. Carb6 and R. Gallifa, Nuovo Cimento 10 (1972) 576. (d) R. Carb6, Int. J. Quant.
Chem. 6 (1972) 609. (e) R. Carb6 and R. Gallifa, Anal. Fisica 68 (1972) 197. (f) R. Carb6 and R.
Gallifa, Nuovo Cimento 17 (1973) 46. (g) R. Carb6 and R. Gallifa, Anal. Fisica 69 (1973) 331.

[16] (a) L. Pauling and E.B. Wilson, jr., Introduction to Quantum Mechanics (McGraw-Hill, New
York, 1935). (b) H. Eyring, J. Walter and G.E. Kimball, Quantum Chemistry (Wiley, New York,
1948). (c) C.H. Wilcox (ed.), Perturbation Theory and its Applications in Quantum mechanics
(Wiley, New York, 1966). (d) F.L. Pilar, Elementary Quantum Chemistry (McGraw-Hill, New
York, 1968). (e) R. Carb6 and J.A. Hernfindez, Introducci6n a la Teorfa de Matrices (Editorial
Alhambra, S.A. Madrid, 1983).

[17] J.O. Hirschfelder, Int. J. Quant. Chem. 3 (1969) 731.
[18] J.O. Hirschfelder, in ref. [16c] p. 3: Applicability of perturbation theory to molecular problems.
[19] R. Carb6 and E. Besalfl, J. Math. Chem. 13 (1993) 331.
[20] E. Besalfl and R. Carb6, J. Math. Chem. 15 (1994) 397-406.
[21] W. Kutzelnigg, Theor. Chim. Acta 83 (1992) 263.

